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Abstract:
This paper presents an algorithm for designing a robust and optimal controller for active magnetic 

bearing systems. The active magnetic bearing systems are widely applied for high speed machining due 
to no contact operation, low fiction, lubrication-free operation, and extended life. However, they are non-
linear, unstable, multiple input and multiple output systems. Therefore, a robust and optimal controller is 
required. In this paper, we derive dynamic equation and analyze response of the open loop system. Based 
on the dynamic response of the system, we propose a suitable controller with robust and optimal criteria 
using particle swarm optimization. The simulation results show that the closed loop system attains good 
performance in compared with conventional PID controllers.
Keywords: Robust controller; mixed H∞/H2 controller; particle swarm optimization; magnetic bearing 
systems; MIMO systems.

1. Introduction
Active Magnetic Bearings (AMBs) have 

many advantages over conventional bearings such 
as contact-less operation, low frictional losses, 
lubrication-free operation, and extended life. With 
these advantages, AMBs are widely applied in 
many real applications for replacing conventional 
bearings, including high speed machining [1], 
or magnetically supported flywheels [2,3]. 
However, AMB systems are non-linear due to the 
nonlinearities of electromagnetic field. They are 
also inherently open loop unstable systems. To 
adapt with the dynamic changing of ABMs systems, 
adaptive control techniques were applied for ABMs 
systems such as nonlinear adaptive inverse control 
by Jeng J. T. [4]; linear parameter varying control by 
Lu B. et al. [5]; and self-tuning fuzzy PID control 
by Chen K. U. [6]. In Jeng’s research, he used a 
nonlinear adaptive inverse controller to overcome 
the nonsystematic design of nonlinear ABMs 
systems. He used a neural network structure for his 
adaptive inverse controller. However, this method 
required a long training time of inverse model with 
neural network and cannot work on-line. 

In recent years, robust H∞ control has 
received a great deal of attention because of its 
systematic design methodology with robust stability 
guaranteed. For ABMs systems, robust gain 
scheduling H∞ control was previously proposed by 
Matsumura et al. to eliminate unbalance vibration 
[7]. In this design they separated the systems into 
two simple SISO systems, therefore, the coupling 
effect among axis was not considered. Jastrjebski 

R. P. et al. [8] introduced a centralized H∞ control 
method with a procedure for selecting weighting 
functions using genetic algorithm (GA). Another 
robust control technique was also presented in a 
research by Sheu J. S. et al. [9]. These above H∞ 
control designs showed that the closed loop systems 
were robustly stable but the order of received 
controllers are very high. In Matsumura design [7], 
the controller has 32 state variables. 

Mixed H2/H∞ control is a newly robust and 
optimal control technique for systems associated with 
sources of uncertainties and external disturbances, 
firstly proposed by Bernstein and Haddad [10]. This 
control technique then has been extendedly studied 
by many researchers [11,12]. However, the main 
limitation of the mixed H2/H∞ control is that it is 
high order; hence it is complicate to implement in 
reality both by hardware or software solutions with 
higher cost and more complicated in compared with 
simple conventional PID controllers. Therefore, 
a low-order mixed H2/H∞ control is preferred for 
embedded controllers. The low-order mixed H2/H∞ 
control is defined as finding a low-order controller 
satisfied mixed H2/H∞ robust and optimal criteria. 
However, this design comes up with a non-convex 
and complicate optimization problem which cannot 
be solved by convex optimization tools such as 
gradient-based or linear programming methods.

This research proposes a systematic 
methodology for designing a robust and optimal 
mixed H2/H∞ controller for ABM systems. This 
design methodology satisfies the criteria of mixed 
H2/H∞ paradigm using particle swarm optimization 
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approach. The design methodology also 
investigation into the thorough understanding of the 
ABMs dynamics system so that a cross-feedback 
scheme with a tracking notch filter are used.

2. Methods
2.1. Dynamics Model of Active Magnetic Bearing 
Systems
2.1.1. Active Magnetic Bearing Systems
Consider a vertical ABM system with a flywheel at 
the center is shown in Fig.1. The rotor is considered 
to be rigid because the first bending frequency of 
rotor is about 1200Hz (72.000 rpm) which is far 
above the nominal operating speed (40.000 rpm). 
The radial motion of the vertical ABM system is 
controlled by two magnetic bearings A and B.
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Figure 1. Vertical ABMs Systems

The dynamic equations can be written in a 
matrix form as follows
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The equation (1) can be expressed in state 
space variable form as follows

i w
r
r

M
I

M K r
r

M B M E
0 0 0

1 1 1 1C
= + +
- -- - - -p

o

u u u u o u u> > > > >H H H H H

(2)

Let X
r
rp =
o> H, Y i

0pa = > H, and F
w
0= > H

Then the state space of the ABM system 
becomes:

X A X B Y F
Y C X

p p p p pa d

p p p

K= + +

=

o
*  	      (3)

Let the transfer function from input to output 
is ( )G spu  without present of imbalance disturbance, 
and the transfer function from imbalance disturbance 
to output is ( )H sp , we have:

 ( ) ( )
( )

( )G s Y s
Y s

C sI A Bp
pa

p

p p p
1= = - -u  	       

(4)

( ) ( )
( )

( )H s F s
Y s

C sI Ap
p

p p d
1K= = - -  	     

Then ( ) ( ) ( ) ( ) ( )Y s G s Y s H s F sp p pa p= +u                (5)

where ( )G spu  and ( )H sp  are four-by-four transfer 
function matrixes.

2.1.2. Dynamic Model of Power Amplifier
The power amplifier transforms controller 

output voltages to currents that flow through 
magnetic bearing coils. Pulse width modulation is 
normally used for ABMs systems. A simplified first 
order transfer function is used to represent power 
amplifier dynamics

( )G s Ls R
K

I xPA
PA

4 4= +  	                     (6)

2.2. Robust and Optimal Mixed H2/H∞ Control
2.2.1. Robust and Optimal Mixed H2/H∞ Control 
Setup

To control for robust stability of an ABM 
system with optimal control energy and tracking 
error, three main problems must be addressed in a 
closed loop system:

(i) The coupling effect by gyroscopic 
moment among axes of the bearings must be 
controlled. This is implemented by a symmetric 
controller with cross-feedback term.

(ii) The imbalance disturbance torques which 
depends on rotating speed must be canceled out. This 
is implemented by adding a tracking notch filter.

(iii) The system must be robustly stable with 
all uncertainties of the plant and present of sensor 
noise and control energy as well as tracking error is 
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minimized. This is implemented with mixed H2/H∞ 
control framework.

Because matrix Ap  in (4) is changed with 
rotation speed Ω, ( )G spu  is also changed with Ω. 
This changing can be represented as structured 
multiplicative uncertainty in the following form

( ) ( ) ( ( ))G s G s I G sp p pD= +u  	                     (7)
Where Gp(s) is nominal model at working 

speed Ω and ( )G sp3  is uncertainty due to changing 
of Ω. Due to this symmetric property of the ABMs 
systems, then a symmetric controller be applied. 
The closed loop control system setup for mixed H2/
H∞ controller design is presented in Fig. 2. A source 
of noise in measurement is run-out, called ( )S ss , 
created by out of roundness of the shaft surface and 
must be considered in the control system design.

Figure 2. Closed loop control diagram with power amplifier dynamics, system uncertainty, imbalance 
disturbance and sensor noise

 In the control diagram in Fig. 2, we have
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  or  u = Kpq      (8)

             
( ) ( ) .K s K s Tp c

1= -                                                 (9)

Based on the analysis of ABMs dynamic 
systems with open loop step response, a multi-
variable, center of mass co-ordinate PID control law 
(without integral term) with cross-feedback control 
is proposed as follows.
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Rewrite equation (10), we have the controller 

Kp(s) is:
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Where each PID controllers with low pass 
filter attached is selected in the form

( )K
s

K K s
1

1
PDi

lp
Pi Di2x

=
+

+_ i ,  i = 1'3           (12)

Kp1(s) is sub-controller for controlling 

bearing A and bearing B, and Kp2(s) is sub-controller 
with cross-feedback term. Kp2(s) is used to cancel 
the coupling gyroscopic moment of the system. 
With the multiple inputs multiple outputs (MIMO) 
controlled system as shown in Fig. 3, the uncertainty 
of the plant is modeled by multiplicative uncertainty. 
Where Gp(s) is the nominal plant model, ( )G sp3   
is the structured uncertainty of the plant, Kp(s) is a 
PID-type controller, ( )R sp  is reference input, ( )F s  
is imbalance disturbance, and ( )S ss  is sensor noise. 
We have:

( ) ( )
( )

G s G s
G s

Ip
p

p
D = -

uf p                            (13)

Assume that the plant perturbation, ( )G sp3 , 
is upper bound by a stable weighting function W1(s) 
with

( ) ( )G s W sp 1#D
3 3                              (14)

And ( ) ( ) .K s K s Tp c
1= -

                           (15)

It is proved by small gain theorem by 
Bernstein, D.S. et al. [10] that if a controller, K(s), 
is designed so that:

(i) The nominal closed-loop system ( ( )G sp3  
= 0) is asymptotically stable.

(ii) The robust stability performance against 
plant uncertainty satisfies the following inequality

( ) ( )J W s T s 1,a 1 1=3 3  		      (16)
(iii) The robust stability performance against 

external disturbance (sensor noises) satisfies the 
following inequality
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( ) ( )J W s S s 1,b 2 1=3 3  	   	     (17)
Then, the closed-loop system is also 

asymptotically stable with ( )G sp3 , and sensor 
noises ( )S ss , where W2(s) is an upper bound stable 
weighting function of ( )S ss , S(s) and T(s) are 
sensitivity and complementary sensitivity functions 
of the system, respectively.

( ) ( ( ) ( ))S s I G s K sp
1= + - 		      (18)

( ) ( ) ( ) ( ( ) ( ))T s G s K s I G s K sp p
1= + -

	     (19)

In many control systems, not only the robust 
stability against plant uncertainty and sensor noise, 
but also small tracking error and small control energy 
are also important. The problem of minimizing the 
tracking error and control energy of a system can be 
defined as minimizing the following multi-objective 
cost function.
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where ( ) ( ) ( ) ( )E s I G s K s R sp
1= + -_ i  	     (21)

( ) ( ) ( ) ( ) ( )U s I G s K s R s K sp
1= + -_ i  	     (22)

The robust and optimal control problem of 
ABMs system is defining as finding all parameters 
of the controller in equation (12) which minimizes 
the cost function in (21) subject to constraints (17) 
and (18). This is a non-convex optimization problem 
with constraints, then PSO is proposed to solve this 
optimization problem.

2.2.2. Selecting of Weighting Functions 
Weighting function W1 is selected as a 

bound function of Gp3 . The nominal model is 
derived at nominal speed Ω = 40.000 rpm, assume 
that the changing speed of rotor is 25%. Then we 
can calculate , ,G G Gp p p1 2 3D D D  at three speed Ω 
= 20.000 rpm, 30.000 rpm, and 50.000 rpm using 

formula G G
G

Ip
p

p
D = -

uf p, bode plot of these 

uncertainties and the weighting function W1 is 
selected as a bound is show in Figure 3.

The weighting function is selected as follows

( ) ( )
( )

W s s
s

I10
10 10

x1 4 2

2 7 2

4 4=
-
-

 	                   
(23)

The weighting function W2 is selected as a 
bound function of sensor noises (run-out).

( )W s s
k

I1 x
s

si
2 4 4x= +   	                     (24)

where ksi is sensor gain, / ( )f1 2s srx = .

Figure 3. Bode plot of the weighting function W1  
and singular value uncertainties

2.2.3. Particle Swarm Optimization Algorithm
PSO algorithm is one of the most recent 

evolutionary techniques. The method was 
developed by simulation of simplified social model, 
where each population is called a swarm. In PSO 
algorithm, multiple solutions are together and 
collaborate simultaneously. Each candidate, called 
a particle, flies through problem space to look for 
the optimal position, similar to food searching 
of bird swarm. A particle adapts its position 
based on its own knowledge, and knowledge of 
neighboring particles. The algorithm is initialized 
with a population of random particles. It searches 
for the optimal solution by updating particles in 
generations.

Let the search space be N-dimensional, then 
the particle i is represented by an N-dimensional 
position vector, xi = (xi1, xi2,..., xiN). The velocity 
is represented also by an N-dimensional velocity 
vector, vi = (vi1, vi2, ..., viN). The fitness of particles 
is evaluated by the objective function of the 
optimization problem. The best previously visited 
position of particle i is noted as its individual best 
position, Pi = (pi1, pi2,..., piN). The position of the 
best individual of the whole swarm is noted as the 
global best position, G = (G1, G2,..., GN). At each 
step of searching process, the velocity of particle 
and its new position are updated according to the 
following two equations [17].
( ) . ( ) . . ( ( ) ( ))

. . ( ( ) ( ))
v k w v k c r P k x k

c r G k x k
1i i i i

i

1 1

2 2

+ = + - +

+ -
 	    

(25)
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( ) ( ) ( )x k x k v k1i i i+ = +  	                                  (26)
where w, called inertia weight, controls the 

impact of previous velocity of the particle. r1, r2,   
are random variables in the range of [0,1]. c1, c2 are 
positive constant parameters called acceleration 
coefficients. The value of each component in v is 
limited to the range [-vmax , vmax] to control excessive 
roaming of particles outside the search space.

2.2.4. Designing Robust and Optimal Mixed H2/
H∞ Controller Based on PSO

We select PID-type controller as shown 
in (26), then each particle of the swarm has 6 
parameters as i  = {Kp1, Kd1, Kp2, Kd2, Kp3, Kd3}.
The step of PSO algorithm for searching the PD 
controller parameters is as follows:

Step 1: Set the particle i to i  = {Kp1, Kd1, 
Kp2, Kd2, Kp3, Kd3}. The number of parameters of the 
controller is the particle dimension. The maximum 
number of iterations is defined as GenMax.

Step 2: When the swarm size is H, initialize 
a random swarm of H particles as , , ..., H1 2i i i# -.

Step 3: For each generation of particles, 
evaluate the objective function for each particle 
using the objective function shown by equation 
(20), constraints (21) and (22), and determine the 
individual best Pik and global best G(k).

Step 4: Update the particle velocity and its 
new position using the equations (25) and (26).

Step 5: When the maximum number of 
iterations is obtained, the algorithm is ended. If the 
maximum number of iterations is not obtained, go 
back to Step 3.

3. Results and Discussion

a. Xa vs Ya

b. Xb vs Yb
Figure 4. Plot of positions for A and B bea rings 

with robust and optimal controller

To compare with the conventional design, 
we have the simulation of the conventional design 
as shown in Fig. 5.

c. Xa vs Ya

d. Xb vs Yb
Figure 5. Plot of positions for A and B bearings with 

conventional design
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The following parameters of swarm are set-
up: swarm size H = 10, dimension of each particle 
is 6, c1 = c2 = 2, numbers of iterations is 200, the 
initial weight w is 0.95 and changing to final weight 
is 0.4, velocity limit is set to [-200, 200], .0 8b =  
and .0 2a = . The program is running in MATLAB 
with 10 times, the following parameters of PID-
type controller are received with the best value of 
the cost function.

opti  = {-0.132, -4.1.10-5, -1.27, -6,4.10-5, 
-1.45.10-2, 7.3.10-5}                                             (39)

.
. . .K

s
s

0 0000318 1
0 132 4 1 10

PD1 2

5

=
+

- - -

_ i                  (40)

.
. . .K

s
s

0 0000318 1
1 27 6 4 10

PD2 2

5

=
+

- - -

_ i                    (41)

.
. . . .K

s
s

0 0000318 1
1 45 10 7 3 10

PD3 2

2 5

=
+

- +- -

_ i           (42)

With the cost function as follows
( ) ( ) .J E s U s 92 142 2

2
2
2b a= + =

( ) ( ) .J W s T s 0 971,a 1= =3 3

( ) ( ) .J W s S s 0 892,b 2= =3 3

The simulation result of closed loop system 
with designed controller is shown in the Fig. 4 at 
working speed of Ω = 40.000 rpm.

4. Conclusion
The paper presents a process of designing a 

robust and optimal controller for active magnetic 
bearing systems. The active magnetic bearing 
systems are widely applied for high speed machining 
due to no contact operation, low fiction, etc. 
However, It is a non-linear, unstable, multiple input 
and multiple output system. Therefore, a robust 
and optimal controller is required. In the paper, 
we derive dynamic equation and analyze response 
of the open loop system. Based on the dynamic of 
the system, we propose a suitable controller with 
robust and optimal criteria using particle swarm 
optimization. The simulation results show that the 
closed loop system attains good performance in 
compared with conventional PID controllers.
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ĐIỀU KHIỂN TỔI ƯU VÀ BỀN VỮNG H2/H∞
CHO HỆ VÒNG BI TỪ TRƯỜNG TÍCH CỰC

Tóm tắt:
Bài báo này trình bày thuật toán thiết kế bộ điều khiển tối ưu và bền vững cho hệ vòng bi từ trường 

tích cực. Hệ vòng bi từ trường tích cực được sử dụng rộng rãi cho các hệ thống chuyển động tốc độ cao do 
hoạt động không tiếp xúc, ma sát thấp, không cần bôi trơn, và có tuổi thọ cao. Tuy nhiên, hệ này là hệ phi 
tuyến, không ổn định, có nhiều đầu vào và nhiều đầu ra. Bởi vậy, một bộ điều khiển tối ưu và bền vững là 
cần thiết. Trong bài báo này, chúng tôi xây dựng phương trình động lực học và phân tích đáp ứng của hệ 
vòng hở. Dựa trên đáp ứng đó, chúng tôi đề xuất một bộ điều khiển phù hợp với tiêu chuẩn tối ưu và bền 
vữngsử dụng tối ưu hóa bầy đàn. Kết quả mô phỏng chỉ ra rằng hệ vòng kín đạt chất lượng tốt hơn so với 
bộ điều khiển PID thông thường.
Từ khóa: Bộ điều khiển bền vững, điều khiển H∞/H2, tối ưu hóa bầy đàn, hệ vòng bi từ trường, hệ MIMO.


