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Abstract:

This paper presents an algorithm for designing a robust and optimal controller for active magnetic
bearing systems. The active magnetic bearing systems are widely applied for high speed machining due
to no contact operation, low fiction, lubrication-free operation, and extended life. However, they are non-
linear, unstable, multiple input and multiple output systems. Therefore, a robust and optimal controller is
required. In this paper, we derive dynamic equation and analyze response of the open loop system. Based
on the dynamic response of the system, we propose a suitable controller with robust and optimal criteria
using particle swarm optimization. The simulation results show that the closed loop system attains good
performance in compared with conventional PID controllers.

Keywords: Robust controller; mixed Hoo/H2 controller; particle swarm optimization; magnetic bearing

systems, MIMO systems.

1. Introduction

Active Magnetic Bearings (AMBs) have
many advantages over conventional bearings such
as contact-less operation, low frictional losses,
lubrication-free operation, and extended life. With
these advantages, AMBs are widely applied in
many real applications for replacing conventional
bearings, including high speed machining [1],
or magnetically supported flywheels [2,3].
However, AMB systems are non-linear due to the
nonlinearities of electromagnetic field. They are
also inherently open loop unstable systems. To
adapt with the dynamic changing of ABMs systems,
adaptive control techniques were applied for ABMs
systems such as nonlinear adaptive inverse control
by Jeng J. T. [4]; linear parameter varying control by
Lu B. et al. [5]; and self-tuning fuzzy PID control
by Chen K. U. [6]. In Jeng’s research, he used a
nonlinear adaptive inverse controller to overcome
the nonsystematic design of nonlincar ABMs
systems. He used a neural network structure for his
adaptive inverse controller. However, this method
required a long training time of inverse model with
neural network and cannot work on-line.

In recent years, robust H_ control has
received a great deal of attention because of its
systematic design methodology with robust stability
guaranteed. For ABMs systems, robust gain
scheduling H_ control was previously proposed by
Matsumura et al. to eliminate unbalance vibration
[7]. In this design they separated the systems into
two simple SISO systems, therefore, the coupling
effect among axis was not considered. Jastrjebski
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R. P. et al. [8] introduced a centralized H_ control
method with a procedure for selecting weighting
functions using genetic algorithm (GA). Another
robust control technique was also presented in a
research by Sheu J. S. et al. [9]. These above H
control designs showed that the closed loop systems
were robustly stable but the order of received
controllers are very high. In Matsumura design [7],
the controller has 32 state variables.

Mixed H,/H_ control is a newly robust and
optimal control technique for systems associated with
sources of uncertainties and external disturbances,
firstly proposed by Bernstein and Haddad [10]. This
control technique then has been extendedly studied
by many researchers [11,12]. However, the main
limitation of the mixed H,/H_ control is that it is
high order; hence it is complicate to implement in
reality both by hardware or software solutions with
higher cost and more complicated in compared with
simple conventional PID controllers. Therefore,
a low-order mixed H/H_ control is preferred for
embedded controllers. The low-order mixed H/H
control is defined as finding a low-order controller
satisfied mixed H/H  robust and optimal criteria.
However, this design comes up with a non-convex
and complicate optimization problem which cannot
be solved by convex optimization tools such as
gradient-based or linear programming methods.

This research proposes a systematic
methodology for designing a robust and optimal
mixed H/H_ controller for ABM systems. This
design methodology satisfies the criteria of mixed
H,/H_ paradigm using particle swarm optimization
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approach. The design methodology also
investigation into the thorough understanding of the
ABMs dynamics system so that a cross-feedback
scheme with a tracking notch filter are used.

2. Methods

2.1. Dynamics Model of Active Magnetic Bearing
Systems

2.1.1. Active Magnetic Bearing Systems
Consider a vertical ABM system with a flywheel at
the center is shown in Fig.1. The rotor is considered
to be rigid because the first bending frequency of
rotor is about 1200Hz (72.000 rpm) which is far
above the nominal operating speed (40.000 rpm).
The radial motion of the vertical ABM system is
controlled by two magnetic bearings A and B.
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Figure 1. Vertical ABMs Systems

The dynamic equations can be written in a
matrix form as follows
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The equation (1) can be expressed in state
space variable form as follows

S e

@)

%y =|& _|v
Let X, = r,Y;a— O,andE— 0

Then the state space of the ABM system
becomes:
{& =A4,X,+ B Y, + AF .
Y,=CX, )
Let the transfer function from input to output
is Gp (s) without present of imbalance disturbance,
and the transfer function from imbalance disturbance
to output is H,(s), we have:

~ Y,(s) -
GP(S) = ; (S) = Qp(si_ép) Ep
- “4)
Y, ) .
H($)=Fy ~ G6L=4,) A,
Then ¥ (5) = G, (5) Y, (5) + H, () F(5) ®)

where G], (s) and H,(s) are four-by-four transfer
function matrixes.

2.1.2. Dynamic Model of Power Amplifier

The power amplifier transforms controller
output voltages to currents that flow through
magnetic bearing coils. Pulse width modulation is
normally used for ABMs systems. A simplified first
order transfer function is used to represent power
amplifier dynamics

Gpuls) = TBAn (©)
2.2. Robust and Optimal Mixed H,/H  Control
2.2.1. Robust and Optimal Mixed H,/H_ Control
Setup

To control for robust stability of an ABM
system with optimal control energy and tracking
error, three main problems must be addressed in a
closed loop system:

(i) The coupling effect by gyroscopic
moment among axes of the bearings must be
controlled. This is implemented by a symmetric
controller with cross-feedback term.

(i1) The imbalance disturbance torques which
depends on rotating speed must be canceled out. This
is implemented by adding a tracking notch filter.

(ii1) The system must be robustly stable with
all uncertainties of the plant and present of sensor
noise and control energy as well as tracking error is
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minimized. This is implemented with mixed H,/H_
control framework.

Because matfix A, in (4) is changed with
rotation speed Q, G,(s) is also changed with Q.
This changing can be represented as structured
multiplicative uncertainty in the following form

G,(s) = G,(5)(I + AG, (5)) R

Where Gp(s) is nominal model at working

Transformto COG coordinate

speed Q and A G, (s) is uncertainty due to changing
of Q. Due to this symmetric property of the ABMs
systems, then a symmetric controller be applied.
The closed loop control system setup for mixed H,/
H_ controller design is presented in Fig. 2. A source
of noise in measurement is run-out, called S,(s),
created by out of roundness of the shaft surface and
must be considered in the control system design.

Figure 2. Closed loop control diagram with power amplifier dynamics, system uncertainty, imbalance
disturbance and sensor noise

In the control diagram in Fig. 2, we have
'm Kll K12 K13 KM 67/
Ly _ Ky Ky Ky Kyl z
i Ky Ky Ky K6,
Ky Ky K Ky y

K(s)=K,(5).T," 9

or u=Kgq ®)

Based on the analysis of ABMs dynamic
systems with open loop step response, a multi-
variable, center of mass co-ordinate PID control law
(without integral term) with cross-feedback control
is proposed as follows.

[iza + izb - szZ - Kdzz'
¥ iza - izb = Kpﬁg/ 67/ - Kdﬂy ég/ - Kpﬁz ez + Kdﬂzé
by T iy ==K,y — K, p
- Kpﬂz 92 - Kdﬂz Gz + Kpﬂy ey - Kdﬂy ey
(10)

Rewrite equation (10), we have the controller

K (s) is:

i

ya Iy =

—Kppi Kppy —Kpps 0
_ Kppi  Kppy  Kpps 0
K (s) B _KPD3 0 —Kpp Kppo (1 1)
Kpps 0 Kpp Kppy

Where each PID controllers with low pass
filter attached is selected in the form

Kpp; = : 5 (Kpi+ Kp;s), i=1+3

(Tys+1) (12)

K (s) is sub-controller for -controlling
pl
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bearing 4 and bearing B, and sz(s) is sub-controller
with cross-feedback term. sz(s) is used to cancel
the coupling gyroscopic moment of the system.
With the multiple inputs multiple outputs (MIMO)
controlled system as shown in Fig. 3, the uncertainty
ofthe plant is modeled by multiplicative uncertainty.
Where Gp(s) is the nominal plant model, AG,(s)
is the structured uncertainty of the plant, Kp(s) isa
PID-type controller, R (s) is reference input, F(s)
is imbalance disturbance, and S (s) is sensor noise.

We have:
G,(s)
AGP(S)Z(m—I) (13)

Assume that the plant perturbation, AG,(s),
is upper bound by a stable weighting function W (s)
with

IAG, @I =W ()]

And K(s) =K, (s). Tt

(14)
(15)

It is proved by small gain theorem by
Bernstein, D.S. et al. [10] that if a controller, K(s),
is designed so that:

(i) The nominal closed-loop system (A G, (s)
= 0) is asymptotically stable.

(i1) The robust stability performance against
plant uncertainty satisfies the following inequality

Jua =M ST ). <1 (16)

(iii) The robust stability performance against
external disturbance (sensor noises) satisfies the
following inequality
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T = W) S ) < 1 (17

Then, the closed-loop system is also
asymptotically stable with AG,(s), and sensor
noises S, (s), where W (s) is an upper bound stable
weighting function of S (s), S(s) and 7{(s) are
sensitivity and complementary sensitivity functions
of the system, respectively.

S =+ G, (K@)
T(s) = G, (K U+ G, ()K(s)

(18)
(19)

In many control systems, not only the robust
stability against plant uncertainty and sensor noise,
butalso small tracking error and small control energy
are also important. The problem of minimizing the
tracking error and control energy of a system can be
defined as minimizing the following multi-objective
cost function.

J=BIES)+alus)l; =

= %ftrace(E(ja))E(ja))T)da) +=

== Uf trace(U(jo) U(jw)" )dw 20)
Broa=1

where E(s) = (1+G,(s)K(s)) 'R(s) (21)

U@s)=(1+G,()K(s)) ROK(s)  (22)

The robust and optimal control problem of
ABMs system is defining as finding all parameters
of the controller in equation (12) which minimizes
the cost function in (21) subject to constraints (17)
and (18). This is a non-convex optimization problem
with constraints, then PSO is proposed to solve this
optimization problem.

2.2.2. Selecting of Weighting Functions
Weighting function W, is selected as a
bound function of AG,. The nominal model is
derived at nominal speed Q = 40.000 rpm, assume
that the changing speed of rotor is 25%. Then we
can calculate AG,,AG,,,AG,; at three speed Q

pl>

=20.000 rpm, 30.000 rpm, and 50.000 rpm using

G,
formula AGP=(G—"—I ), bode plot of these

P

uncertainties and the weighting function W, is

selected as a bound is show in Figure 3.
The weighting function is selected as follows

10°(s— 107)?

Wi(s)= me

(23)

The weighting function W, is selected as a
bound function of sensor noises (run-out).
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ksi
Wo(s) = 75T lsa (24)

where £k, is sensor gain, T, = 1/(27f).

w

1

Figure 3. Bode plot of the weighting function
and singular value uncertainties

2.2.3. Particle Swarm Optimization Algorithm

PSO algorithm is one of the most recent
evolutionary  techniques. The method was
developed by simulation of simplified social model,
where each population is called a swarm. In PSO
algorithm, multiple solutions are together and
collaborate simultaneously. Each candidate, called
a particle, flies through problem space to look for
the optimal position, similar to food searching
of bird swarm. A particle adapts its position
based on its own knowledge, and knowledge of
neighboring particles. The algorithm is initialized
with a population of random particles. It searches
for the optimal solution by updating particles in
generations.

Let the search space be N-dimensional, then
the particle i is represented by an N-dimensional
position vector, x, = (x,, X,,..., X,). The velocity
is represented also by an N-dimensional velocity
vector, v, = (v, V,, ..., v,,). The fitness of particles
is evaluated by the objective function of the
optimization problem. The best previously visited
position of particle i is noted as its individual best
position, P, = (p,, p,»--» Pp)- The position of the
best individual of the whole swarm is noted as the
global best position, G = (G, G,...., G,). At each
step of searching process, the velocity of particle
and its new position are updated according to the
following two equations [17].
vitk+ 1) =w.vi(k) +c .. (P (k) —x; (k) +

T¢.1.(Gk) —x; (k) (25)
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x;(k+1) =x;(k) +vi (k) (26)

where w, called inertia weight, controls the
impact of previous velocity of the particle. 7, 7,
are random variables in the range of [0,1]. ¢, c, are
positive constant parameters called acceleration
coefficients. The value of each component in v is
limited to the range [-v _, v ] to control excessive

max’ "~ max-

roaming of particles outside the search space.

2.2.4. Designing Robust and Optimal Mixed H,/
H_ Controller Based on PSO

We select PID-type controller as shown
in (26), then each particle of the swarm has 6
parameters as 6 = {K " K,, sz, K, K . K.}
The step of PSO algonthm for searching the PD
controller parameters is as follows:

Step 1: Set the particle i to 6 = {K , K,
sz, K, Kp3, K .}. The number of parameters of the
controller is the particle dimension. The maximum
number of iterations is defined as GenMax.

Step 2: When the swarm size is H, initialize
a random swarm of H particles as {6,,6,,...,0,}.

Step 3: For each generation of particles,
evaluate the objective function for each particle
using the objective function shown by equation
(20), constraints (21) and (22), and determine the
individual best P, and global best G(k).

Step 4: Update the particle velocity and its
new position using the equations (25) and (26).

Step 5: When the maximum number of
iterations is obtained, the algorithm is ended. If the
maximum number of iterations is not obtained, go
back to Step 3.

3. Results and Discussion
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Figure 4. Plot of positions for A and B bea rings
with robust and optimal controller

To compare with the conventional design,
we have the simulation of the conventional design
as shown in Fig. 5.
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Figure 5. Plot of positions for A and B bearings with
conventional design
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The following parameters of swarm are set-
up: swarm size H = 10, dimension of each particle
is 6, ¢, = ¢, = 2, numbers of iterations is 200, the
initial weight w is 0.95 and changing to final weight
is 0.4, velocity limit is set to [-200, 200], 8= 0.8
and a = 0.2. The program is running in MATLAB
with 10 times, the following parameters of PID-
type controller are received with the best value of
the cost function.

0, = {-0.132, -4.1.10°, -1.27, -6,4.107,

-1.45.102,7.3.10°} (39)
—0.132-4.1.107%
Kpp = 40
" (0.0000318s + 1) (40)
_ _ —5

(0.0000318s+ 1)

—1.45.10°+7.3.10%

Kppy = 42
e (0.0000318s + 1) 42)

With the cost function as follows
Jy=BlE@)E+a|U)E=92.14
Jeo =M () T(s)]l. =0.971
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o =W (s)S(s)|. = 0.892

The simulation result of closed loop system
with designed controller is shown in the Fig. 4 at
working speed of Q =40.000 rpm.

4. Conclusion

The paper presents a process of designing a
robust and optimal controller for active magnetic
bearing systems. The active magnetic bearing
systems are widely applied for high speed machining
due to no contact operation, low fiction, etc.
However, It is a non-linear, unstable, multiple input
and multiple output system. Therefore, a robust
and optimal controller is required. In the paper,
we derive dynamic equation and analyze response
of the open loop system. Based on the dynamic of
the system, we propose a suitable controller with
robust and optimal criteria using particle swarm
optimization. The simulation results show that the
closed loop system attains good performance in
compared with conventional PID controllers.
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PIEU KHIEN TOI UU VA BEN VUNG H JH,
CHO HE VONG BI TU TRUONG TiCH CUC

Tom tat:

Bai bdo nay trinh bay thudt todn thiét ké bo diéu khién t6i wu va bén viing cho hé vong bi tir trirong
tich cuc. Hé vong bi tur truong tich cuc dwgc sir dung rong rdi cho cdac hé théng chuyén dong t6¢ dé cao do
hoat dong khong tiép xiic, ma sdt thap, khong can béi tron, va c6 tudi tho cao. Tuy nhién, hé nay la hé phi
tuyén khong on dinh, c6 nhiéu dau vao va nhiéu dau ra. Béi vdy, mot bg diéu khién toi wu va bén vimg la
can thiét. Trong bai bdo nay, chiing téi xdy dztng phuong trinh dong luc hoc va phan tich dap ung cua hé
vong ho. Dua tren dap Lrng do, chung 16i dé xudt mét bo dzeu khién phit hop véi tiéu chudn toz wu va bén
vitngsir dung t6i wu héa bay dan. Két qua mé phong chi ra rang hé vong kin dat chat lwong t6t hon so véi
bé diéu khién PID théng thuong.

Tir khéa: Bo diéu khién bén viig, diéu khién H /H, t6i wu héa bay dan, hé vong bi tir truong, hé MIMO.
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