Determination of structural and ground state properties of some materials using density functional theory
Abstract
Structural optimization is potentially important to determine the chareristic of a new material, especially in nano-material science. Density functional theory, which have been applied extensively in recent years, emerges as an efficient method to study real materials applied in many desciplines of nano science and technology. In this report, we introduce biefly the theory and its application in the structural optimization by estimating the total energy of some materials. For the cubic structure materials, with a fit model, we find a curve to figure out the optimal point. For the system with two variations of lattice parameters, we compute total energies for obtaining a surface. Smooth surface is obtained by 2D spline fitting method. A discussion of the effect of approximations used in each case is given. The electronic structure calculation of SbxBi2-xTe3 is performed to clarify some aspects of its transport property and the effect of elecment substitution Sb-Bi, in which the spin-orbital coupling for relativistic-effect description has been included.
References
P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. B 136, 864 (1964).
W. Koch, M. C. Holthausen, A Chemist’s Guide to Density Functional Theory, 001 Wiley-VCH Verlag GmbH, ISBNs: 3-527-30372-3, 30 (2001).
W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects,Phys. Rev. 140, A1133 (1965).
L. Hedin, B. I. Lundqvist, Explicit local exchange-correlation potentials,J. Phys. C: Solid State Phys. 4, 2064 (1971); U. von Barth, L. Hedin, J. Phys. C 5, 1629 (1972).
J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996); Phys. Rev. Lett. 78, 1396 (1997).
Murnaghan, F. D. The compressibility of media under extreme pressures. Proc. N. A. S. 30, 244–247 (1944).
G. J. Snyder and E. S. Toberer, Complex thermoelectric materials, Natural Materials 7, 105 (2008).
R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature 413, 597 (2001).
M. K. Jacobsen, R. S. Kumar, A. L. Cornelius, S. V. Sinogeiken, and M. F. Nicol, AIP Conf. Proc. 955, 171 (2007).
E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O2 molecule, Phys. Rev. B 24, 864 (1981).
P. Giannozzi et al. QUANTUM ESPRESSO : a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. matter 395502, (2009).
S. J. Youn and A. J. Freeman, First-principles electronic structure and its relation to thermoelectric properties of Bi2Te3, Phys. Rev. B 63, 085112 (2001).
Tran Van Quang, Miyoung Kim, The thermoelectric transport properties of Bi2Te3 under the substitutions of rare earths, KPS meeting, DG-40*, p37, Peongchang, 24-26/10/2012
M. Kim, A. J. Freeman, and C. B. Geller, Screened exchange LDA determination of the ground and excited state properties of thermoelectrics: Bi2Te3, Phys. Rev. B 72, 035205, (2005); S. J. Youn and A. J. Freeman, Phys. Rev. B 63, 085112 (2001).
Tran Van Quang, Hanjo Lim, and Miyoung Kim, Temperature and carrier-concentration dependences of the thermoelectric properties of bismuth selenide dioxide compounds, JKPS 61, 1728 (2012); ISSN: 0374-4884 (print version); ISSN: 1976-8524 (electronic version)
G. D. Mahan and J. O. Sofo, the best thermoelectric, Proc. Natl. Acad. Sci. U.S.A. 93, 7436 (1996).
Tran Van Quang, Miyoung Kim, Spin orbit coupling and correlation effect on the structural optimization of telluride alloys; first-principles approach, KOMAG, 2012.
M. S. Park, J. H. Song, J. E. Medvedeva, M. Kim, I. G. Kim, and A. J. Freeman, Phys. Rev. B 81, 155211 (2010).
M. Kim, A. J. Freeman, and C. B. Geller, Phys. Rev. B 72, 035205 (2005).