SIMULTANEOUS ESTIMATION OF TEMPERATURE-DEPENDENT THERMAL CONDUCTIVITY AND HEAT CAPACITY FOR THE CYLINDRICAL FINS
Abstract
Levenberg – Marquardt Method (LMM) is presented in this paper to estimate the temperaturedependent thermal conductivity and heat capacity for the cylindrical fin simultaneously. The undetermined thermophysical properties are expressed as the polynomial function with unknown parameters. The accuracy of this inverse problem is investigated by two numerical examples. The average relative errors between estimated and exact value of thermal conductivity and heat capacity for the largest measurement error σ = 0.25 are 0.130 % and 0.173 % for the first example and 0.128 % and 0.164 % for the second example. The obtained results showed that Levenberg – Marquardt Method is an accurate and robust method to estimate simultaneously the temperature-dependent thermal conductivity and heat capacity for the cylinder fin.
References
Q.D. Kern, D.A. Kraus, Extended Surface Heat Transfer, McGraw-Hill, New York, 1972.
Y.W. Yang, Periodic heat transfer in straight fins. ASME J. Heat Transf., 1972, 94, pp. 310-314.
S. Mosayebidorcheh, M. Rahimi-Gorji, D. Ganji, T. Moayebidorcheh, O. Pourmehran, M. Biglarian, Transient thermal behavior of radial fins of rectangular, triangular and hyperbolic profiles with temperature-dependent properties using DTM-FDM. J Cent South Univ, 2017, 24, pp. 675-682.
M. Jayaprakash, H.A. Alzahrani, G. Sowmya, R.V. Kumar, M. Malik, A. Alsaiari, B.Prasannakumara, Thermal distribution through a moving longitudinal trapezoidal fin with variable temperature-dependent thermal properties using DTM-Pade approximant. Case Studies in Thermal Engineering, 2021, 28, p. 101697.
N. Fallo, R.J. Moitsheki, O.D. Makinde, Analysis of heat transfer in a cylindrical spine fin with variable thermal properties. in: Defect and Diffusion Forum. Trans Tech Publ, 2018, pp. 10-22.
L.N.P. Nguyen, Q. Nguyen, S.H. Nguyen, Optimization of fin with rectangular and triangular shapes by Levenberg – Marquardt method. Mathematical Modelling of Engineering Problems, 2022, 9(1), pp. 245-25.
W. L. Chen, Y. C. Yang, H. L. Lee, Inverse problem in determining convection heat transfer coefficient of an annular fin. Energy Conversion and Management, 2007, 48, pp. 1081-1088.
E.T. Jaynes, The well-posed problem. Foundation Phys., 1973, 3(4), pp. 477-492.
M.N. Ozisik, H.R.B. Orlande, Inverse Heat Transfer. Fundamentals and Applications, Taylor and Francis, New York, 2000.
Q. Nguyen, C.-y. Yang, Design of a longitudinal cooling fin with minimum volume by a modified Newton–Raphson method. Applied Thermal Engineering, 2016, 98, pp. 169-178.
C.Y. Yang, Estimation of the periodic thermal conditions on the non-Fourier fin problem. International Journal of Heat and Mass Transfer, 2005, 48(17), pp. 3506-3515.
N. Quan, N.H. Son, N.Q. Tuan, Minimum Volume of the Longitudinal Fin with Rectangular and Triangular Profiles by a Modified Newton–Raphson Method. International Journal of Computational Methods, 2018, 15(05), 1850034.
W.L. Chen, H.M. Chou, Y.C. Yang, an inverse problem in estimating the space-dependent thermal conductivity of a functionally graded hollow cylinder. Composites Part B: Engineering, 2013, 50, pp. 112-119.
D.T.W. Lin, C.Y. Yang, J.C. Li, C.C. Wang, Inverse estimation of the unknown heat flux boundary with irregular shape fins. International Journal of Heat and Mass Transfer, 2011, 54, pp. 5275-5285.
R. Das, Application of genetic algorithm for unknown parameter estimations in cylindrical fin. Applied Soft Computing, 2012, 12, pp. 3369-3378.
R. Das, P.P. Dutta, Application of simulated annealing for simultaneous estimation of parameters in a cylindrical fin. Numerical Heat Transfer Part A, 2012, 61, pp. 699-716.
C. Multiphysics, Introduction to comsol multiphysics®, COMSOL Multiphysics, Burlington, MA, accessed Feb, 2018, 9, 32.
Imani, A., A. A. Ranjbar, and M. Esmkhani. “Simultaneous estimation of temperature-dependent thermal conductivity and heat capacity based on modified genetic algorithm”. Inverse Problems in Science and Engineering, 2006, 14, no. 7, pp. 767-783.
User’s Manual: Math Library Version 1.0, IMSL Library Edition 10.0, IMSL, Houston, TX, 1987.