HANDWRITTING CHARACTER RECOGNITION USING CONVOLUTIONAL NEURAL NETWORKS

  • Nguyen Quang Hoan Hung Yen University of Technology and Education
  • Pham Ngoc Hung Hung Yen University of Technology and Education
  • Nguyen Dinh Tai Posts and Telecommunications Institute of Technology

Abstract

The article detects and recognizes the images of Latin handwriting characters using convolutional neural networks (CNN) and image processing algorithms. The contribution of the paper is proposing a method for handwriting character recognition using convolutional neural networks. Data for input to the system are collected from the character databases and handwritten form of the National Institute of Standards and Technology (NIST). The research model gives results of identification with high accuracy.

References

Ross, Girshick (2014). "Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation" (PDF). Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE. doi:10.1109/CVPR.2014.81.

Girschick, Ross (2015). "Fast R-CNN" (PDF). Proceedings of the IEEE International Conference on Computer Vision: 1440–1448. arXiv:1504.08083.

Shaoqing, Ren (2015). "Faster R-CNN" (PDF). Advances in Neural Information Processing Systems. arXiv:1506.01497.

Đoàn Hồng Quang, Lê Hồng Minh, Chu Anh Tuấn (2015), “Nhận dạng bàn tay bằng mạng nơ ron nhân tạo”, Tuyển tập báo cáo diễn đàn “Đổi mới - Chìa khóa cho sự phát triển bền vững”, Viện Ứng dụng Công nghệ, Bộ Khoa học và Công nghệ.

Creus, Antonio (1994): "Accuracy (Trueness and Precision) of Measurement Methods and Results - Part 1: General Principles and Definitions.", p.1

Nikulin, M. S. (2001) [1994], "Risk of a Statistical Procedure", in Hazewinkel, Michiel (ed.), Encyclopedia of Mathematics, Springer Science+Business Media B.V./Kluwer

Sepp Hochreiter; Jürgen Schmidhuber (1997). "Long Short-Term Memory". Neural Computation

https://vi.wikipedia.org/wiki/Nhan_dang_ky_tu_quang_hoc

Nguyễn Quang Hoan, Lý Đông Hà, Ngô Xuân Trang, Lê Công Hiếu (2014), “Ứng dụng mạng nơron trong nhận dạng và dự báo”, Tạp chí Khoa học và Công nghệ, Trường Đại học Sư phạm Kỹ thuật Hưng Yên, ISSN 2354-0575, số 16/12-2017.

Published
2020-01-12