STUDY ON THE LOW-TEMPERATURE SYNTHESIS OF MANGANESE-DOPED ZINC-BARIUM SILICATE LUMINESCENT MATERIALS

  • Nguyen Thi Thanh Faculty of Chemical and Environmental Technology, Hung Yen University of Technology and Education

Abstract

This work studies the ability to form solid solutions in zinc barium silicate, as well as the effects of Ba2+ ions, Mn2+ ions, boric acid, and acetic acid on the luminescence and crystalline properties of manganese doped zinc barium silicate luminescent materials. The products were characterized by X-ray diffraction, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and PL photoluminescence. The results show that when replacing Zn2+ ions with Ba2+ ions in the formula Zn1.97BaxMn0.03SiO4, the product after heating at 900 °C for 45 minutes forms a solid solution as x changes from 0 to 0.5. When x = 0.6, in addition to Zn2SiO4, BaZn2Si2O7 is also present. The single-phase solid solutions all have the Rhombo.H.axes structure of Zn2SiO4. The sample with the composition Zn1.57Ba0.4Mn0.03SiO4 has the highest luminescence intensity, emitting green light corresponding to the wavelength of 525 nm when excited by 254 nm. The addition of H3BO and acetic acid also increases the luminescence of the product.

References

M. Takesue, H. Hayashi, and R. L. Smith, “Thermal and chemical methods for producing zinc silicate (willemite): A review,” Prog. Cryst. Growth Charact. Mater., 2009, vol. 55, no. 3–4, pp. 98–124, doi: 10.1016/j.pcrysgrow.2009.09.001.

C. Wang, J. Wang, J. Jiang, S. Xin, and G. Zhu, “Redesign and manually control the commercial plasma green Zn2SiO4:Mn2+ phosphor with high quantum efficiency for white light emitting diodes,” J. Alloys Compd., 2020, vol. 814, pp. 1–8, doi: 10.1016/j.jallcom.2019.152340.

Y. Z. Ruqiao DAI, Renfei CHENG, Jiemin WANG, Chao ZHANG, Cuiyu LI, Hailong WANG, Xiaohui WANG,*, “Tunnel-structured willemite Zn2SiO4: Electronic structure, elastic, and thermal properties Article,” J. Adv. Ceram., 2022, vol. 11(8), pp. 1249–1262, doi: https://doi.org/10.1007/s40145-022-0607-1.

Z. G. Portakal-Uçar, M. Oglakci, M. Yüksel, M. Ayvacıklı, and N. Can, “Structural and luminescence characterization of Ce3+ and Mn2+ co-activated zinc silicate nanocrystal obtained by gel combustion synthesis,” Mater. Res. Bull., 2021, vol. 133, no. June 2020, p. 111025, doi: 10.1016/j.materresbull.2020.111025.

T. I. Krasnenko et al., “Structural and chemical mechanism underlying formation of Zn2SiO4:Mn crystalline phosphor properties,” J. Alloys Compd., 2020, vol. 820, p. 153129, doi: 10.1016/j.jallcom.2019.153129.

R. F. Samigullina and T. I. Krasnenko, “Thermal analysis and mechanism of formation of Zn2SiO4:Mn phosphor under heating of synthetic hemimorphite,” Mater. Res. Bull., 2020, vol. 129, no. March, p. 110890, doi: 10.1016/j.materresbull.2020.110890.

A. Naeimi, A. M. Arabi, and V. Merajifar, “A novel approach to the synthesis of Zn2SiO4:Mn luminescent nanoparticles,” J. Mater. Sci. Mater. Electron., 2019, vol. 30, no. 10, pp. 9123–9132, doi: 10.1007/s10854-019-01241-z.

V. Sivakumar and A. Lakshmanan, “Pyrolysis synthesis of Zn2SiO4:Mn2+ phosphors - Effect of fuel, flux and co-dopants,” J. Lumin., 2014, vol. 145, pp. 420–424, doi: 10.1016/j.jlumin.2013.08.016.

Y. Hao, X. Li, L. Song, and Y. Wang, “Luminescence behavior of Zn1.92-xMxSi1-yNyO4:0.08Mn (M = Mg, Ba; N = Al, Ti, P) phosphors,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 2010, vol. 166, no. 1, pp. 122–125, doi: 10.1016/j.mseb.2009.10.012.

T. I. Krasnenko, N. A. Zaitseva, I. V. Ivanova, I. V. Baklanova, R. F. Samigullina, and M. V. Rotermel, “The effect of Mg introduction on structural and luminescence properties of Zn2SiO4:Mn phosphor,” J. Alloys Compd., 2020, vol. 845, p. 156296, doi: 10.1016/j.jallcom.2020.156296.

L. Dang, C. Tian, S. Zhao, and Q. Lu, “Barium and manganese-doped zinc silicate rods prepared by mesoporous template route and their luminescence property,” J. Cryst. Growth, 2018, vol. 491, pp. 126–131, doi: 10.1016/j.jcrysgro.2018.03.040.

Y. C. Kang, M. A. Lim, H. D. Park, and M. Han, “Ba2+ Co-doped Zn2SiO4:Mn Phosphor Particles Prepared by Spray Pyrolysis Process,” J. Electrochem. Soc., 2003, vol. 150, no. 1, p. H7, doi: 10.1149/1.1523416.

E.-J. Popovici et al., “On the synthesis of manganese activated zinc silicate phosphor,” Proc. SPIE, 2001, vol. 4430, pp. 297–303, doi: 10.1117/12.432857.

V. Sivakumar, A. Lakshmanan, S. Kalpana, R. Sangeetha Rani, R. Satheesh Kumar, and M. T. Jose, “Low-temperature synthesis of Zn2SiO4:Mn green photoluminescence phosphor,” J. Lumin., 2012, vol. 132, no. 8, pp. 1917–1920, doi: 10.1016/j.jlumin.2012.03.007.

F. Xue et al., “Photoluminescence and afterglow of Mn2+ doped lithium zinc silicate,” J. Lumin., 2017, vol. 183, pp. 68–72, doi: 10.1016/j.jlumin.2016.11.026.

K. W. Park, H. S. Lim, S. W. Park, G. Deressa, and J. S. Kim, “Strong blue absorption of green Zn2SiO4:Mn2+ phosphor by doping heavy Mn2+ concentrations,” Chem. Phys. Lett., 2015, vol. 636, pp. 141–145, doi: 10.1016/j.cplett.2015.07.032.

M. C. Parmar, W. D. Zhuang, K. V. R. Murthy, X. W. Huang, Y. S. Hu, and V. Natarajan, “Role of SiO2 in Zn2SiO4:Mn2+ phosphor used in optoelectronic materials,” Indian J. Eng. Mater. Sci., 2009, vol. 16, no. 3, pp. 185–187.

K. Omri and L. El Mir, “In-situ sol–gel synthesis of luminescent Mn2+-doped zinc silicate nanophosphor,” J. Mater. Sci. Mater. Electron., 2016, vol. 27, no. 9, pp. 9476–9482, doi: 10.1007/s10854-016-4996-1.

K. A. Petrovykh, A. A. Rempel, V. S. Kortov, and E. A. Buntov, “Sol-gel synthesis and photoluminescence of Zn2SiO4:Mn nanoparticles,” Inorg. Mater., 2015, vol. 51, no. 2, pp. 152–157, doi: 10.1134/S0020168515020156.

G. Buxbaum and G. Pfaff, Industrial Inorganic Pigments. Willey-VCH, 2005.

C. E. Rivera-Enríquez, A. Fernández-Osorio, and J. Chávez-Fernández, “Luminescence properties of α- and β-Zn2SiO4:Mn nanoparticles prepared by a co-precipitation method,” J. Alloys Compd., 2016, vol. 688, pp. 775–782, doi: 10.1016/j.jallcom.2016.07.266.

B. T. V. A. Le Xuan Thanh, “Nghiên cứu khả năng tổng hợp chất phát quang kẽm silicat họat hóa bởi mangan,” Tạp chí Hóa học Ứng dụng, 2007, vol. 4(64), no. Hoa hoc & ung dung, pp. 32–34.

K. Sohn, B. Cho, H. Chang, and H. D. Park, “Effect of Co‐doping on the Photoluminescence Behavior of Zn2SiO4 : Mn Phosphors,” J. Electrochem. Soc., 1999, vol. 146, no. 6, pp. 2353–2356, doi: 10.1149/1.1391939.

C. Bertail, S. Maron, V. Buissette, T. Le Mercier, T. Gacoin, and J. P. Boilot, “Structural and photoluminescent properties of Zn2SiO4:Mn2+ nanoparticles prepared by a protected annealing process,” Chem. Mater., 2011, vol. 23, no. 11, pp. 2961–2967, doi: 10.1021/cm2005902.

L. El Mir, K. Omri, and J. El Ghoul, “Effect of crystallographic phase on green and yellow emissions in Mn-doped zinc silicate nanoparticles incorporated in silica host matrix,” Superlattices Microstruct., 2015, vol. 85, pp. 180–184, doi: 10.1016/j.spmi.2015.05.029.

M. T. Mohsen Ben Haha, Frank Bullerjahn, Dirk Schmitt, Nicolas Spencer, “Patent Fluxes Mineralizers for calcium sulfoaluminate cements.pdf,” 2015.

Richard A. Eppler et al, Ceramic colorants, 2012, vol. 109, no. 3. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

R. A. Smith, “Boric Oxide, Boric Acid, and Borates,” in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005.

Y. Liao, Practical Electron Microscopy and Database. GlobalSino, 2007.

M. Bengisu, Engineering Ceramics. Springer, 2001.

J. P. Schaffer, A. Saxena, S. D.Antolovich, T. H.Sanders, and S. B.Warner, “The science and design of engineering materials,” McGraw–Hill Int. 2nd ed, Singapore, 1999, pp. 82–84, 95–96, doi: 10.1016/0016-0032(57)90035-2.

Published
2024-02-20