OPTIMIZING THE PARAMETERS OF VOLTAGE, CURRENT INTENSITY, AND PULSE TIME FOR MATERIAL REMOVAL RATE ON THE EDM MACHINE WHEN MACHINING C45 STEEL
Abstract
This study investigates the influence of voltage U, current intensity I, and pulse duration Ton on the material removal rate MRR in electrical discharge machining (EDM) on C45 steel. The work uses the Taguchi optimization methodology with three input parameters (voltage U, current intensity I, pulse duration T on), and each parameter set at three levels, resulting in a total of 9 experiments to evaluate the MRR for optimal efficiency. The results indicate that the material removal rate reaches the highest efficiency at 0.355 g/min with the most optimal set of parameters (U = 30V, I = 1.5A, Ton = 80μs). This study serves as a foundation for optimizing parameters to achieve the highest material removal rate in EDM processing.
References
Rupesh and J. Kumar, “Optimization of WEDM process of pure titanium with multiple performance characteristics using Taguchi’s DOE approach and utility concept,” Front. Mech. Eng., vol. 8, no. 2, pp. 201–214, 2013, doi: 10.1007/s11465-013-0256-8.
A. Alias, B. Abdullah, and N. M. Abbas, “Influence of machine feed rate in WEDM of Titanium Ti-6Al-4V with constant current (6A) using brass wire,” Procedia Eng., 2012, vol. 41, no. Iris, pp. 1806–1811, doi: 10.1016/j.proeng.2012.07.387.
S. A. Sonawane and M. L. Kulkarni, “Application of utility concept approach for multi-response optimisation of wire electrical discharge machining during profile cutting of Inconel-625,” Int. J. Mach. Mach. Mater., 2018, vol. 20, no. 1, pp. 13–47, doi: 10.1504/IJMMM.2018.089468.
R. Mukherjee and S. Chakraborty, “Selection of EDM process parameters using biogeographybased optimization algorithm,” Mater. Manuf. Process., 2012, vol. 27, no. 9, pp. 954–962, doi: 10.1080/10426914.2011.610089.
N. Pragadish and M. Pradeep Kumar, “Optimization of Dry EDM Process Parameters Using Grey Relational Analysis,” Arab. J. Sci. Eng., 2016, vol. 41, no. 11, pp. 4383–4390, doi: 10.1007/s13369-016-2130-6.
H. Majumder and K. Maity, “Optimization of machining condition in WEDM for titanium grade 6 using MOORA coupled with PCA - A multivariate hybrid approach,” J. Adv. Manuf. Syst., 2017, vol. 16, no. 2, pp. 81–99, doi: 10.1142/S0219686717500068.
A. Majumder, P. K. Das, A. Majumder, and M. Debnath, “An approach to optimize the EDM process parameters using desirability-based multi-objective PSO,” Prod. Manuf. Res., 2014, vol. 2, no. 1, pp. 228–240, doi: 10.1080/21693277.2014.902341.
B. C. Kandpal, J. Kumar, and H. Singh, “Optimization and characterization of EDM of AA 6061/10%Al2O3 AMMC using Taguchi’s approach and utility concept,” Prod. Manuf. Res., 2017, vol. 5, no. 1, pp. 351–370, doi: 10.1080/21693277.2017.1389315.
N. Faisal and K. Kumar, “Optimization of Machine Process Parameters in EDM for EN 31 Using Evolutionary Optimization Techniques,” Technologies, 2018, vol. 6, no. 2, p. 54, doi: 10.3390/technologies6020054.
P. H. Nguyen et al., “Application of TGRA-Based Optimisation for Machinability of HighChromium Tool Steel in the EDM Process,” Arab. J. Sci. Eng., 2020, vol. 45, no. 7, pp. 5555–5562, doi: 10.1007/s13369-020-04456-z.
Sharma, A. K., EDm process parameters impact on MRR and TWR for titanium alloy [Ti6al4v] and their optimization using taguchi and topsis method-an experiential analysis. In IOP Conference Series: Materials Science and Engineering, 2021, April, Vol. 1116, No. 1, p. 012030, IOP Publishing.